Pearson Edexcel

Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International GCSE
In Physics (4PH1) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number 67161
Publications Code 4PH1_2P_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
(ii) (iii) (iv)	B - main sequence stars; A is not correct as black holes do not appear on the HR diagram C is not correct as neutron stars are not part of the main sequence. D is not correct as protostars are not part of the main sequence bottom left area of the HR diagram; top right hand area of HR diagram; a measure of brightness/luminosity; idea that a star would be at a standard distance (10 parsecs/32(.6) light years);	unlabelled scores 0 unlabelled scores 0 accept power ignore lack of or incorrect value for distance	1
(b) (i) (ii)	C-ultraviolet; A is not correct as microwaves cause internal heating B is not correct as radio waves do not give skin burns D is not correct as visible light cannot harm skin cells. A - sunbathing; B, C and D are not correct as all reduce the absorption of UV by skin.		1

Total for Question 1: 7 marks

Question number	Answer	Notes	Marks
2 (a)	300 (metres);		1
(b)	```0.554; any answer given to 2 sf; correct answer = 0.55 (s) e.g. (0.50+0.62+0.52+0.58+0.55)/5 = 0.554 (s) =0.55 (s) to 2 s.f.```	mark independently	2
(c)	```difference in distance is 180 m; recall of equation: speed = distance / time taken; substitution; correct evaluation; correct answer = 330(m/s) e.g. speed = (300-120)/0.55 speed = 180/0.55 speed = 327.2727... (m/s)```	allow use of standard symbols e.g. $v=d / t$ condone s for v, s for d ECF incorrect distance and ECF incorrect time from (b) answer is 327.2727 ... (m / s) answer is 324.90 ... $(\mathrm{m} / \mathrm{s})$ if $0.554(\mathrm{~s})$ is used	4
(d)	human reaction time;	accept alternative valid variables e.g. wind speed, temperature, humidity, air pressure	1

[^0]| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3 (a) | insulator; | Allow 'non/not conductive' | 1 |
| (b) | any reference to electron transfer; loss (of electrons); | idea of 'loss of electrons (from tube)' scores 2.
 reject any reference to movement of positive charges | 2 |
| (c) | electrons move through wire; as they are attracted by or to the metal mast;
 idea that this makes metal mast neutral (again); | allow idea of 'opposite charges attracting'
 allow idea of 'to earth/earthing the mast' if no other mark scored | 3 |
| (d) | ```recall of equation energy = charge }\times\mathrm{ voltage; substitution or re-arrangement; evaluation; correct answer = 860 (V) e.g. energy = charge }\times\mathrm{ voltage voltage = energy/charge = 3.7/0.0043 voltage = 860.465... (V) voltage = 860 (V)``` | allow use of standard symbols e.g. $\mathrm{E}=\mathrm{Q} \times \mathrm{V}$ reject C,c for charge
 -1 for PoT error | 3 |
| (e) | spark/discharge; damage/harm/injury/electrocution (of engineer); | | 2 |

Total for Question 3: 11 marks

Question number	Answer	Notes	Marks
6 (a)	creation of a (large) nucleus from small nuclei; resulting in a loss of mass; and the release of energy;	condone "fusing of two nuclei" accept reference to $\mathrm{E}=\mathrm{mc}^{2}$ condone "converted to energy"	3
(b) (i) (ii)	$\begin{aligned} & \text { electrical working; } \\ & \text { substitution in } \mathrm{V}_{\text {in }} I_{\text {in }}=V_{\text {out }} I_{\text {out }} ; \\ & \text { re-arrangement; } \\ & \text { evaluation; } \\ & \text { correct answer }=1.8(\mathrm{kA}) \\ & \\ & \text { e.g. input power }=\text { output power } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }} \mathrm{I}_{\text {out }} \\ & 28 \times 21=330 \times \mathrm{I}_{\text {out }} \\ & \mathrm{I}_{\text {out }}=(28 \times 21) \div 330 \\ & \mathrm{I}_{\text {out }}=1.7818 \ldots \end{aligned}$	condone 'electrically' -1 POT error	1 3

Total for Question 6: 7 marks

Question number	Answer	Notes	Marks
7 (a)	$\begin{aligned} & \text { correct substitution } \mathrm{KE}=1 / 2(\text { mass }) \times(\text { speed })^{2} \text {; } \\ & \text { re-arrangement to give } v ; \\ & \text { evaluation to show } 5.8(4 \ldots)(\mathrm{m} / \mathrm{s}) \text {; } \\ & \text { e.g. } \mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2} \\ & 0.29=0.5 \times 0.017 \times \mathrm{v}^{2} \\ & \mathrm{v}^{2}=0.29 \div(0.5 \times 0.017)=34.1176471 . . \\ & v=\sqrt{2} 4.1176471=5.8(4 \ldots)(\mathrm{m} / \mathrm{s}) \end{aligned}$	allow use of standard symbols e.g. $\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$ allow mass $=17$ at this point	3
(b)	idea of conservation of momentum; idea that momentum before release was zero; evidence of re-arrangement; evaluation of large block speed giving $1.3 \mathrm{~m} / \mathrm{s}$; e.g. momentum of small block $=17 \times 6=102 \mathrm{~g} \mathrm{~m} / \mathrm{s}$ therefore momentum of large block $=102 \mathrm{~g} \mathrm{~m} / \mathrm{s}$ momentum $=$ mass \times velocity $=75 \mathrm{v}$ so $v=102 / 75=1.36 \mathrm{~m} / \mathrm{s}$	however expressed allow idea that momenta of two blocks is equal in magnitude allow 1.4 if $\mathrm{v}_{\text {small }}=6 \mathrm{~m} / \mathrm{s}$ ignore mass unit provided both masses consistent $\begin{aligned} & v=1.31 \text { if } v_{\text {small }}=5.8 \mathrm{~m} / \mathrm{s} \\ & v=1.32 \text { if } v_{\text {small }}=5.84 \mathrm{~m} / \mathrm{s} \end{aligned}$	4
(c)	```substitution into given equation; idea of initial momentum = 0; evaluation; correct answer = 0.93(N) e.g. force = change in momentum }\div\mathrm{ time taken force = ((0.017 × 6)-0) \div0.11 force = 0.102 \div0.11 force = 0.9272\ldots(N)```	allow use of init velocity $=0$	3
(d)	```substitution and re-arrangement of given equation; conversion of 17.6 cm to 0.176 m ; evaluation; correct answer \(=0.18(41 \ldots)(\mathrm{s})\) e.g. orbital speed \(=(2 \pi \times\) orbital radius \() \div\) time period \(6=(2 \pi \times 0.176) \div T\) \(\mathrm{T}=(2 \pi \times 0.176) \div 6\) \(\mathrm{T}=0.1843 . .\). (s)```	accept 0.2 (s) accept use of $\mathrm{v}=5.84 \ldots(\mathrm{~m} / \mathrm{s})$ -1 POT error 0.092 .. (s) for using 17.6 cm as a diameter scores 2 marks	3

Total for Question 7: 13 marks

[^0]: Total for Question 2: 8 marks

